To evolve the ATAC-seq analysis R code, we can incorporate several recent methodologies and findings from the literature. Below are key enhancements based on current research:
Here is a sample R code snippet that incorporates some of these enhancements:
library(DESeq2)
library(ggplot2)
# Load ATAC-seq data
atac_data <- read.csv('atac_seq_data.csv')
# Differential accessibility analysis
dds <- DESeqDataSetFromMatrix(countData = atac_data,
colData = sample_info,
design = ~ condition)
dds <- DESeq(dds)
# Visualization of results
results <- results(dds)
plotMA(results, main='MA Plot of ATAC-seq Data')
# Venn diagram of accessible regions
venn_data <- list(Group1 = atac_data$group1, Group2 = atac_data$group2)
venn.plot <- venn.diagram(venn_data, filename=NULL)
grid.draw(venn.plot)
import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import mutual_info_score # Load datasets atac_data = pd.read_csv('atac_seq_data.csv') rna_data = pd.read_csv('rna_seq_data.csv') # Calculate mutual information between ATAC and RNA-seq data mi = mutual_info_score(atac_data['accessibility'], rna_data['expression']) print(f'Mutual Information: {mi}') # Visualization plt.scatter(atac_data['accessibility'], rna_data['expression']) plt.title('ATAC-seq vs RNA-seq') plt.xlabel('Chromatin Accessibility') plt.ylabel('Gene Expression') plt.show()